
HAC-SLAM: Human Assisted Collaborative 3D-SLAM Through
Augmented Reality

Malak Sayour, Mohamad Karim Yassine, Nadim Dib, Imad H. Elhajj, Boulos Asmar, Elie Khoury, Daniel Asmar

Abstract— Simultaneous Localization and Mapping (SLAM)
has emerged as a prime autonomous mobile agent localization
algorithm. Despite the global research effort to improve SLAM,
its mapping component remains limited and serves little more
than to satisfy the coupled localization problem. We present
a collaborative 3D SLAM approach leveraging the power
of augmented reality (AR). The system introduces a trio of
diverse agents, each with its unique capability to become
an active member in the mapping process: mobile robots,
human operators, and AR head-mounted display (AR-HMD).
A 3D complementary mapping pipeline is developed to utilize
the built-in SLAM capabilities of the AR-HMD as shareable
data. Our system aligns and merges the AR-HMD and the
robot’s local map automatically, triggered by a human-dictated
initial guess. The created merged map proves advantageous
in scenarios where the robot is restricted from navigating in
certain areas. To correct map imperfections resulting from
problematic objects such as transparent or reflective surfaces,
the fused map is overlayed onto the environment, and hand
gestures are used to add or delete 3D map features in real-time.
Our system is implemented in both a lab and a real industrial
warehouse setup. The results show a significant improvement
in the map quality and mapping duration.

I. INTRODUCTION

Recent advancement in the robotics and automation field
[1] [2] has created a pressing need for accurate agent
localization and high-precision spatial information. While Si-
multaneous Localization And Mapping (SLAM) has emerged
as a prime algorithm for agent localization, its mapping
component remains limited, resulting in poor spatial repre-
sentations.

The limited capabilities of SLAM in reconstruction are
often caused by the sensor’s inability to capture the navigated
environment’s geometrical information [3]. Sensor Noise,
reflective surfaces, transparent objects, and other factors,
contribute to incomplete scene representations and can lead
to catastrophic failure in the agent’s navigation [4]. In such
scenarios, human intervention becomes imperative to rectify
inaccuracies and ensure safe navigation. Manual map post-
processing has been widely adopted to ensure correct spatial
representations. However, such a process can prove to be an

M. Sayour, M. K. Yassine, N. Dib, I. H. Elhajj, and D. Asmar are
with the Vision and Robotics Lab, Maroun Semaan Faculty of Engineering
and Architecture, American University of Beirut, 1107 2020, Riad El
Solh, Beirut, Lebanon; email: ms423@aub.edu.lb, mhy16@mail.aub.edu,
ngd04@mail.aub.edu, ie05@aub.edu.lb, da20@aub.edu.lb. (M. Sayour and
M. K. Yassine are co-first authors.)

B. Asmar and E. Khoury are with idealworks, Riesstraße 22,
80992 München, Germany; email: Boulos.Asmar@idealworks.com,
Elie.Khoury@idealworks.com

arduous and time-consuming endeavor, since completing a
robot-generated map requires multiple site visits for missing
measurements. In certain scenarios, post-processing could
require manual measurements of areas where a robot is
prohibited or incapable of navigating.

Collaborative SLAM has emerged as a technique to im-
prove the mapping capabilities of traditional SLAM. Merging
multiple agents’ sub-maps [5], or fusing sensor data of multi-
ple entities [6] all improve the generated map accuracy either
through the redundancy of data or by capitalizing on the
advantageous characteristics of one entity that complements
those of the other. Moreover, the remarkable surge in the
development and integration of AR has blurred the bound-
aries between the virtual and physical worlds [7]. These
cutting-edge technologies have opened new possibilities for
3D map visualization. AR can offer a user-friendly 3D map
visualization, which replaces two-dimensional screens and
allows for a deeper understanding of the mapped environ-
ment [8].

We present a human-robot-AR collaborative SLAM, re-
shaping the way agents interact, while minimizing the
mapping process. Through our innovative approach, we
combine the unique properties of human operators, AR-
HMD headsets, and mobile robots to generate a complete
and accurate 3D representation of a navigable environment.
Once the robot and AR-HMD maps become aligned and
merged, the human operators are provided with real-time
map visualization through the AR-HMD. The visualization
enables the human operators to correct map imperfections,
solve other agents’ mapping conflicts, and most importantly
overlay the generated map over the real world. The key
contribution of our paper can be summarized as follows:

• Heterogeneous collaborative mapping: allowing the fu-
sion of a mobile robot, AR-HMD 3D map, and human
operator input.

• Agent localization in the global map: by utilizing in-
tuitive interface tools, the human operator can localize
other agents’ submaps in the global map.

• AR Map Visualization: allowing the human operator to
overlay the 3D map directly onto the real world.

• Error correction and map refinement: with direct access
to the generated map, users can inspect and correct the
map in real-time and in-situ.

The paper is structured as follows: Section II provides
a concise overview of the relevant literature, Section III

introduces our proposed methodology, Section IV discusses
the experiments and their results, and Section V serves as the
paper’s conclusion. The implemented code is made available
on GitHub1.

II. RELATED WORK

Multiple techniques have been proposed to improve the
mapping capabilities of SLAM [9], [10]. Since many un-
certainties originate from reflective and transparent objects,
Koch et al. [11] presented a mirror detector and reflec-
tion classifier using multi-echo laser scanners in order to
classify transparent and specular reflective objects. Their
results showed that although it is possible to discriminate
materials by the behavior of their reflective characteristics,
transparent object detection remains a challenging problem
as their appearance in the sensor data strongly depends on
the background. In addition, Zhu et al. [12] implemented
a SLAM approach named transfusion that allows trans-
parent object detection and reconstruction. Their approach
includes Transparent objects Cut Iterative Closest Points
(TC-ICP) followed by Transparent Objects Reconstruction
(TO-Reconstruction). Their results showed improvement in
transparent object detection and reconstruction but did not
tackle reflective objects. Also, their approach required high
computational complexity and a GPU-equipped processor.

Collaborative SLAM has been previously attempted to
increase mapping accuracy; nevertheless, local map merging
remains among the most demanding problems in multi-
agent mapping. Wu et al. [13] presented a map merging
method for collaborative LiDAR-SLAM, based on GPS
measurements and improved Iterative Closest Point (ICP).
The GPS measurements provided an initial guess for the
ICP algorithm, where KD-tree and normal vectors were
used to register overlapping regions. However, the proposed
approach cannot be applied to indoor environments or any
outdoor environments void of GPS. To solve the global local-
ization problem in indoor areas, Tian et al. [14] proposed a
distributed multi-robot visual SLAM based on loop closure.
Their work included a two-stage method for outlier-robust
distributed Pose Graph Optimization (PGO). The accuracy of
the proposed solution however depends crucially on detecting
sufficient loop closures. In addition, the proposed Visual
SLAM solution only performs visual loop closure detection,
which makes it sensitive to changes in the viewpoint.

Augmented reality head-mounted displays (AR-HMD),
such as the HoloLens 2, have gained significant attention
in recent years due to their potential to enhance various
applications across different fields. One of the emerging areas
of interest is their utilization in collaborative 3D SLAM
systems. Hofe et al. [8] employed the HoloLens 2 to visualize
the 3D map generated by the Boston Dynamics Spot robot
and overlay it onto the user’s environment. However, aligning
the map with the real environment required manual map
positioning from the human, which can be time-consuming
and affected by human error. Al-Sabbag et al. [15] proposed

1https://github.com/AUBVRL/HAC-SLAM-ICRA

a Human–Machine Collaborative Inspection (HMCI) system
that offers a novel approach where an AR-HMD undergoes
inspections for structural defects in an environment, and
anchors the location of the defects in a robot’s map. Although
HMCI leverages the strengths of the AR-HMD to enable
real-time visualization of structural defects, it does not allow
the inspector to visualize the mapped environment. There-
fore HMCI is not suitable for scenarios where geometric
modifications are needed in the mapped environment. In our
previous work [16], we presented a collaborative 2D SLAM
system that unites a robot, a human operator, and an AR-
HMD. The innovation allows real-time map editing through
hand gestures, utilizing the AR-HMD’s SLAM capabilities
to enhance mapping accuracy. The maps generated by the
agents are aligned using an AR marker mounted on the robot.
The marker is detected by the AR-HMD, which triggers the
map merging process. While the system did well in enabling
human-driven editing and map merging in a 2D occupancy
grid context, this research extends this advancement to a 3D
voxel grid domain. This progression tackles the non-intuitive
problem of voxelizing an environment, requiring efficient
memory management, efficient communication methodolo-
gies, and streamlined rendering techniques that tap into richer
spatial representation and mapping complexity.

III. SYSTEM OVERVIEW

The system architecture is presented in Fig. 1. Each agent
generates its own 3D map of the navigated environment and
sends it to the central unit. In addition to the generated maps,
when needed, the human agent provides the central unit with
map edits. At the central unit level, local maps are aligned
and merged. The central unit is also responsible for applying
human edits to the generated global map. At this point, the
human can visualize the merged map overlayed onto the real
environment and continue editing if necessary. The flowchart
for the the proposed approach is presented in Fig. 2.

• Each agent produces a 3D map as it navigates the
environment.

• Once significant overlap between the maps is achieved,
the align functionality is triggered by the human agent.

• The human agent receives a down-sampled version of
the robot map and visualizes it on the AR-HMD as a
mini-map.

• The human roughly aligns the mini-maps and publishes
the transformation to the central unit.

• The central unit uses the provided transformation as an
initial guess to the ICP algorithm.

• Once aligned, the agents’ maps are merged.
• Beyond this step, every map update from any agent

triggers the map merger.
• Once merged, the human agent can visualize the gener-

ated map overlayed onto the real environment in real-
time

• If adjustments to the map are needed, the human can
manually add or delete voxels using hand gestures.

3D lidar Wheel Odometry

Filtered Point Cloud

Voxel Grid filter

Robot Octomap
Octomap Server

Scan Matcher Graph Slam
Optimisation

Lidar Slam

Map Point Cloud

Robot Octomap
Robot Map Downsampler

AR-HMD Octomap

Octomap Server

Merger

Align Maps Merge Maps Apply Edits

Robot Map Point Cloud

ROBOT CENTRAL UNIT HUMAN AGENT

Voxel Grid Builder Rasterizer

3D mapper

Mini Map Visualization

Merged Map

Alignment

Human Manual Alignment

Human Edits

Visualize Merged Map

Twist ROS Message

Point Cloud of edits

AR-HMD Map Point Cloud

AR-HMD

Fig. 1. System architecture

Start

Robot 3D Map
Generation

AR-HMD 3D Map
Generation

Aquire Robot Map

Downsample Robot
Map

Align maps using ICP

Manually align the 2
maps

Merge maps

Updated
 Robot Map?

Updated
 Human Map?

Aligned ?

Yes

No

Overlay merged Map on the
real Environment

Robot Agent

Central Unit

Human Agent

Yes envirnment

AR-HMD Agent

Trigger AlignHuman edits

Aligned ?

YesYes

Yes

No

No

No

Visualize map

Fig. 2. Operational Flowchart

A. Robot Agent

The robot is equipped with a 3D LiDAR and is controlled
through Robot Operating System (ROS 2). In order to
generate the 3D map, the input point cloud is first down-
sampled by the filterNode using the point cloud library
(PCL) voxel grid filter at a resolution of 0.05 meters. The
filtered point cloud is then used to generate the 3D map using
LiDAR-SLAM [17]. LiDAR-SLAM consists of 2 nodes, the
scanMatching front-end node, and the graphBasedSlam

back-end node. The scanMatching node estimates the
sensor pose and builds the environment map by iteratively
applying scan matching between consecutive frames using
OpenMP-boosted normal distributions transform (NDT) scan
matching. The graphBasedSlam node compensates for the
resultant accumulated error by performing loop detection and
optimizes the generated pose graph. For reliable communica-
tion, the generated point cloud is converted into an octomap
structure [18] and published to the ROS 2 data distribution
service (DDS) server.

B. AR-HMD Agent

1) Voxel Grid Builder: the AR-HMD can generate a spa-
tial mesh of the dynamic environment; raycasting techniques
are leveraged to construct a discrete, cube-like representation
of the environment called voxels. Furthermore, a novel algo-
rithm is designed to harness the raycasting lines derived from
the AR-HMD to instantiate voxels [16]. Initially a set of lines
with varying incident angles are cast from the AR-HMD. If
a ray returns a hit point, it is used as a voxel instantiation
position. The generated position is then rounded with respect
to the discretisation value, keeping the instantiated voxels
from overlapping or being randomly spaced.

2) Raycast Rasterizer: in addition to populating the voxel
grid, the raycasted lines are used to destroy any misplaced
voxels in the environment originating from the dynamic
spatial mesh of the AR-HMD. Whenever the generated
spatial mesh is updated, the voxels occupying the previous
mesh stay in place. The raycasted lines propagate in the
environment until they hit a collider enabled GameObject,
which in our case is set to the spatial mesh. Thus, the
penetrated parts of the environment are defined as free. In
order to acquire the position of these penetrated voxels, the
line is rasterized in 3D. The algorithm for rasterizing a line
is listed in Algorithm 1. The functions representing the line
between the AR-HMD position and the hit point in the yx,
zx, and yz planes are respectively denoted as f(x), g(x),
and h(z). The coordinates of the hit point are compared
with those of the AR-HMD position and the results are
saved as either 1 or -1 in (DirectionVector):

v =

end.x � start.x
|end.x � start.x|

end.y � start.y
|end.y � start.y|

end.z � start.z
|end.z � start.z|

�T

,

where v is the vector that indicates the direction of the rasterizer
ray in the 3D environment.

C. Human Agent

1) Map Alignment: the alignment phase requires the AR-
HMD to first have a substantial portion of the environment
mapped. Afterward, the human agent triggers an interactive
step on the AR-HMD that allows for the alignment of

Algorithm 1 Rasterizer
Require: start, end
Ensure:

f(x) Equation in yx� plane

g(x) Equation in zx� plane

h(z) Equation in yz � plane

v DirectionVector(start, end)
temp = start

while temp 6= end do
if temp.y = f(temp.x+ v.x) then

if temp.z = g(temp.x+ v.x) then
temp.x = temp.x+ v.x

else
temp.z = temp.z + v.z

end if
else

if temp.y = h(temp.z + v.z) then
temp.z = temp.z + v.z

else
temp.y = temp.y + v.y

end if
end if
Destroy voxel at position temp

end while

the local frame with the global frame. The agent views a
downsampled version of the robot’s 3D map, along with a
miniaturized representation of the area explored earlier by
the AR-HMD. The agent roughly localizes the AR-HMD
map into the robot’s map using intuitive hand gestures. Upon
reaching satisfactory results, the agent triggers the AR-HMD
to publish the transformation between the two maps as a
ROS twist message to be used by the central unit’s ICP
as an initial guess. Upon reaching a precise alignment by
the central unit’s ICP, the final transformation between the
two maps is sent back to the AR-HMD to be applied on
the merged map generated by the central unit for accurate
overlay over the operator’s environment.

2) Map Editing: the system leverages the ability of the
human agent to manipulate a map. The AR-HMD prompts
the option to either delete or add voxels in the visualized
environment through a user-friendly interface. Using hand
gestures, the operator can select the lines, areas, and volumes
of interest in 3D. After satisfactory selection, the operator
then confirms the edits, triggering the AR-HMD to publish
the newly added or deleted voxels over a designated ROS
topic.

D. Central Unit
The central unit is responsible for acquiring and fusing

maps received from different agents (Fig 1). To acquire the
map generated by the AR headset, the ROS TCP endpoint
package from Unity technologies was used [19]. The pub-
lished map is received as a point cloud and transformed using
the octomap server to an octomap structure. Four primary
processes are running to ensure a smooth map fusion: the

robot’s map down sampler for smooth communication, the
map aligner, the map merger, and the map editor.

1) Robot Map Downsampling: to optimize the manual
alignment process, the downSampler node filters the robot-
acquired map using the PCL voxel grid filter with a resolu-
tion of 0.5 meters and publishes the down-sampled map to
the DDS server for it to be used by the AR-HMD agent’s
manual alignment component. The set resolution ensures the
persistence of the main map features while respecting the
AR-HMD rendering capabilities and network bandwidth.

2) Map Alignment: the ARFrame and robotFrame rep-
resent the AR-HMD local map frame and the robot local map
frame, respectively. In order to merge the maps generated
by each agent, a transformation between T

global
ARFrame and

T
global
robotFrame is needed to link each agent’s local map to the

global map. As we only have 2 agents, the robot’s local map
frame is considered the global frame. Therefore T

robotFrame
ARFrame

needs to be calculated before any merging process can
be triggered. For this purpose, ICP is used; however, in
scenarios where no overlap is detected between 2 scenes,
the ICP algorithm fails to find the appropriate transformation
matrix. This problem is often solved by using GPS data as
an initial guess [13]. In an indoor environment, GPS cannot
be used, and instead we rely on the human to initiate ICP
with a rough manual alignment. The human can also reset
the map in case of catastrophic SLAM failure. The merger
acquires the transformation as a ROS 2 twist message and
convertes into the initial preliminary transformation matrix
T

robotFrame
ARFrame . Applying the transformation to the AR-HMD

map, the central unit can detect and filter the map overlay.
Subsequently, the filtered common area and the provided
matrix are fed into the ICP algorithm, which refines the
provided transformation between the 2 frames.

3) Map Merger: once the corresponding transformation
matrix is generated, the map merging begins fusing the robot
map with the acquired AR-HMD map to produce a merged
map M . The robot R and AR-HMD’s H acquired octomaps
are both stored in an octree structure based on the type of
octomap message received. Our system supports both full
and binary resolution octomaps. Each octree node stores an
occupancy probability in the form of a log-odds value. The
first step is to generate the aligned octree A by multiplying
H with the transformation matrix generated. Then, for each
Node r in R, the merger finds the corresponding node a in
A and sets the log-odd value of the corresponding node m

in the output merged tree M to

max(log � odda, log � oddr), (1)

giving more weight to the occupied cells. In order to keep
track of the conflicts between the two agents maps, we define
a conflict octree denoted by C. C is appended whenever
a node is defined occupied by the robot yet free by the
AR-HMD. At Last, M and C are published to the DDS
server for it to be accessible by the robot and the AR-HMD.
The complete merge logic is presented in table I. Following
the first merging process, the merger keeps on checking for
updated maps at every time step. Whenever an update is

TABLE I
MERGER DECISION TABLE, FREE (F), OCCUPIED (O), AND UNKNOWN (U).

Mt�1 F O U
Rt F O U F O U F O U
At F O U F O U F O U F O U F O U F O U F O U F O U F O U
Mt F O F O O O F O F F O F O O O F O O F O F O O O F O U

Fig. 3. Ray Irani Oxy Building level 4 3D representation.

received from one of the agents, the merging process is
repeated.

4) Map editing: In addition to aligning and merging maps,
the merger node runs a parallel process monitoring the map
edits published by the human agent. Obstacles to be added
are published on the humanEditsAdd topic as a point
cloud. Whenever data is published on this topic, the edit
callback is triggered. First, the acquired data is transformed
to match the global map frame; second, the function iterates
over the transformed points and generates the octree key
associated with the point 3D coordinates. Following this
step, the log-odd value corresponding to the generated key
is set to 100. Since log-odd values never reach the value of
100 in octrees, this value will help the merger identify the
human-edited voxels and make them non-modifiable by the
merging thread. Similar logic applies to deleting obstacles,
where deleted points are sent on the humanEditsDelete

topic, and the log-odd values are set to -100.

IV. EXPERIMENTS AND RESULTS
We test our system in two experimental settings. The first

experiment is conducted on the fourth floor of Ray. R. Irani
Oxy Building at the American University of Beirut. The
second experiment is conducted in a real industrial setup
at the idealworks warehouse at the BMW plant in Munich,
Germany.

A. Experiment 1
In this experiment, we validate our results on the Clearpath

Husky A200 four-wheel robot equipped with a Mini-ITX
computer and a Velodyne VLP-16 3D LiDAR. The onboard

Fig. 4. Captures from the AR-HMD. Figure (a) features the interactive
AR menu. Figure (b) and (d) show the process of aligning the minimaps.
Figure (c) displays the 3D selector for deleting and adding voxels. Figure
(e) shows a one-to-one representation of the generated map overlayed on
the real.

system is running Ubuntu 20 operating system and ROS 2
Foxy. The robot is tele-operated using a Sony Playstation 4
joystick. For the AR-HMD, We use the Microsoft HoloLens
2 (HL2).

The 3D representation of the mapped floor shown in Fig.3
was generated using the Leica BLK 360 laser scanner. Re-
gion 1, features a narrow hallway in which the robot cannot
navigate, and region 2 references a featureless hallway with
2 glass walls facing each other. Regions 3 and 4 feature the
Vision and Robotics Lab (VRL) and Mobile and Distributed
Computing Lab (MDCL) respectively, in which problematic
objects such as reflective objects and transparent obstacles
were placed.

The experiment initiates from the VRL by tele-operating
the Husky to navigate the entire floor. Simultaneously, the
human agent wearing the HL2 maps the areas of interest.
After mapping a substantial portion of the environment, the
human agent triggers the alignment process using the V iew

Minimaps button found on the hand menu shown in Fig.
4 (a). The button renders minimized versions of the local
maps for the human agent to roughly align as displayed in
Fig. 4 (b). The Send Twist button sends the transformation
that results from the rough alignment to the merger in the
central unit. After the central unit generates the merged map,
the HL2 utilizes it for a 1:1 overlay visualization over the
real environment using the V iew Merged Map button.
Overlaying the map allows the human agent to easily check
and correct for any inaccuracies in the mapped environment
in situ as shown in Fig. 4 (c).

The results are tabulated in table II. Fusing the unedited

TABLE II
MAPPING RESULTS. ROW ONE SHOWS THE GROUND TRUTH OF THE MAPPED AREA OF INTEREST. ROW TWO SHOWS THE RESULTANT 3D MAP FROM

THE ROBOT AGENT. ROW THREE SHOWS THE MERGED MAP RESULTING FROM THE ROBOT AND THE AR-HMD MAPS. ROW FOUR SHOWS THE EDITED

MAP IN APPLICABLE SCENARIOS. FOR VISUALIZATION PURPOSES, THE GROUND PLANE WAS CLIPPED FROM ALL THE MAPS WHILE SOME OF THE

WALLS WERE CLIPPED FROM IDEALWORKS MAPS.

AUB idealWorks
A B C D E F G

Ground
Truth

Robot
Map

Merged
Map

Edited
Map No Edits Needed No Edits Needed No Edits Needed No Edits Needed

local maps shows the ability to map the robot’s unreachable
area shown in Table II-A. Also, the robot map alone does
not perfectly capture the environment features presented in
Table II-C, unless merged with the HL2 map. The glass wall
portrayed in Table II-B, was not captured by either the robot
or the HL2. Therefore the human agent manually adds voxels
for the glass wall using hand gestures. The edits appeared in
place as shown in the edited map.

B. Experiment 2
In this experiment, we validate our results in Idealworks

warehouse using the iw.hub Version 4 robot equipped with
a LS CH32R 3D LiDAR running on Ubuntu 20 operating
system and ROS 2 Foxy. The robot is tele-operated using
a Logitech controller joystick. The HL2 is also used as the
AR-HMD.

A similar testing procedure to that in Experiment 1 is
applied. However, unique challenges are encountered in the
industrial setting: Shelve supports are too narrow for the
robot to map, which is easily repairable by the HL2 mapping,
as depicted in Table II-D.

The TV stand is below the robot’s LiDAR plane, and the
HL2 cannot accurately map it due to its textureless black
surface. Therefore, the human agent is required to manually
edit the map for the stand to be captured as shown in Table
II-E. Despite being inaccessible to the robot, the narrow area
presented in Table II-F is completely mapped using the AR-
HMD. Finally, the reflective plate in Table II-G is represented
by neither the HL2 nor the robot map for being reflective
and under the LiDAR’s plane, which proved the necessity of
manual human edits.

The experiments confirm the effectiveness of our proposed
solution in generating accurate maps of the environment.

Our future work will involve making the editing process
more intuitive, combining the generated map with semantic
data, and allowing the user to add, delete, and move objects.
The user could then add points of interest such as charging
stations or assign control points for improved navigation. The
future steps will also concentrate on increasing scalability,
allowing multiple agents to communicate together over large
areas.

V. CONCLUSION

In this paper, we presented a collaborative 3D SLAM
approach benefiting from the unique characteristics of 3
heterogeneous agents. The mobile robot and AR-HMD’s
local 3D maps were fused together by the central unit using
ICP with a human-defined initial guess. The system offers
the possibility to visualize the one-to-one scale merged map
overlay-ed over the real environment, allowing the human
agent to correct map inaccuracies in real-time. The proposed
approach proved to increase the generated map’s quality by
correctly representing problematic and incomplete objects.
The designed system also proved its efficiency in creating
complete maps in scenarios where the robot is not allowed
(or not able) to navigate certain areas. The proposed approach
can be implemented with any mapping agent producing 3D
point clouds.

ACKNOWLEDGMENT

This work was supported by the DIDYMOS-XR Horizon
Europe project (grant number 101092875–DIDYMOS-XR,
www.didymos-xr.eu), and the Research Board at the Amer-
ican University of Beirut.

REFERENCES

[1] T. T. O. Takleh, N. A. Bakar, S. A. Rahman, R. Hamzah, and Z. Aziz,
“A brief survey on slam methods in autonomous vehicle,” International
Journal of Engineering & Technology, vol. 7, no. 4, pp. 38–43, 2018.

[2] Y. Jiang, S. Yin, K. Li, H. Luo, and O. Kaynak, “Industrial applications
of digital twins,” Philosophical Transactions of the Royal Society A,
vol. 379, no. 2207, p. 20200360, 2021.

[3] A. Sidaoui, M. K. Zein, I. H. Elhajj, and D. Asmar, “A-slam: Human
in-the-loop augmented slam,” in 2019 International conference on
robotics and automation (ICRA). IEEE, 2019, pp. 5245–5251.

[4] R. Koch, S. May, P. Koch, M. Kühn, and A. Nüchter, “Detection
of specular reflections in range measurements for faultless robotic
slam,” in Robot 2015: Second Iberian Robotics Conference: Advances
in Robotics, Volume 1. Springer, 2016, pp. 133–145.

[5] P. Schmuck and M. Chli, “Multi-uav collaborative monocular slam,”
in 2017 IEEE International Conference on Robotics and Automation
(ICRA). IEEE, 2017, pp. 3863–3870.

[6] R. Dubé, A. Gawel, H. Sommer, J. Nieto, R. Siegwart, and C. Cadena,
“An online multi-robot slam system for 3d lidars,” in 2017 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS).
IEEE, 2017, pp. 1004–1011.

[7] J. Carmigniani and B. Furht, “Augmented reality: an overview,”
Handbook of augmented reality, pp. 3–46, 2011.

[8] N. V. Hofe, P. Sossalla, J. Hofer, C. L. Vielhaus, J. Rischke, J. Steinke,
and F. H. P. Fitzek, “Demo: Robotics meets augmented reality: Real-
time mapping with boston dynamics spot and microsoft hololens 2,”
in 2023 IEEE 24th International Symposium on a World of Wireless,
Mobile and Multimedia Networks (WoWMoM), 2023, pp. 358–360.

[9] Y. Sun, M. Liu, and M. Q.-H. Meng, “Improving rgb-d slam in
dynamic environments: A motion removal approach,” Robotics and
Autonomous Systems, vol. 89, pp. 110–122, 2017.

[10] J. Cheng, Y. Sun, and M. Q.-H. Meng, “Improving monocular visual
slam in dynamic environments: An optical-flow-based approach,”
Advanced Robotics, vol. 33, no. 12, pp. 576–589, 2019.

[11] R. Koch, S. May, P. Murmann, and A. Nüchter,
“Identification of transparent and specular reflective material
in laser scans to discriminate affected measurements
for faultless robotic slam,” Robotics and Autonomous
Systems, vol. 87, pp. 296–312, 2017. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0921889015302736

[12] Y. Zhu, J. Qiu, and B. Ren, “Transfusion: A novel slam method
focused on transparent objects,” in Proceedings of the IEEE/CVF
International Conference on Computer Vision (ICCV), October 2021,
pp. 6019–6028.

[13] J. Wu, J. Wang, and C. Wei, “Robust map merging method for
collaborative lidar-based slam using gps sensor,” Journal of Physics:
Conference Series, vol. 2402, no. 1, p. 012004, dec 2022. [Online].
Available: https://dx.doi.org/10.1088/1742-6596/2402/1/012004

[14] Y. Tian, Y. Chang, L. Quang, A. Schang, C. Nieto-Granda, J. P.
How, and L. Carlone, “Resilient and distributed multi-robot visual
slam: Datasets, experiments, and lessons learned,” arXiv preprint
arXiv:2304.04362, 2023.

[15] Z. A. Al-Sabbag, C. M. Yeum, and S. Narasimhan, “Interactive
defect quantification through extended reality,” Advanced Engineering
Informatics, vol. 51, p. 101473, 2022. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S1474034621002238

[16] A. Sidaoui, I. H. Elhajj, and D. Asmar, “Collaborative human aug-
mented slam,” in 2019 IEEE/RSJ International Conference on Intelli-
gent Robots and Systems (IROS). IEEE, 2019, pp. 2131–2138.

[17] K. Koide, J. Miura, and E. Menegatti, “A portable three-dimensional
lidar-based system for long-term and wide-area people behavior
measurement,” International Journal of Advanced Robotic Systems,
vol. 16, 02 2019.

[18] A. Hornung, K. M. Wurm, M. Bennewitz, C. Stachniss, and W. Bur-
gard, “Octomap: An efficient probabilistic 3d mapping framework
based on octrees,” Autonomous robots, vol. 34, pp. 189–206, 2013.

[19] Unity-Technologies, “Ros-tcp-endpoint,” 2021. [Online]. Available:
https://github.com/Unity-Technologies/ROS-TCP-Endpoint.git

